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to Cadaveric Volatile Organic Compounds*

ABSTRACT: Flies of the Calliphoridae Family are the most forensically important insects because of their abundance on the decedent during
the first minutes following death. Necrophagous insects are attracted at a distance by a decomposing body, through the use of volatile chemical cues.
We tested the possible attractive role of some volatile organic chemicals (VOCs) released by decaying cadavers, on male and female of Lucilia
sericata Meigen (Diptera: Calliphoridae). Two complementary approaches were used. Electroantennography (EAG) allowed identifying the semio-
chemicals that are detected by the olfactory system of L. sericata. Dose–response tests with EAG showed that dimethyl disulfide (DMDS) and
butan-1-ol elicited the highest responses. Behavioral assays showed that, among the VOCs tested, DMDS and butan-1-ol are attractive for L. sericata,
while the other VOCs are repulsive or do not cause any behavior. Our results may have potential implications in a better understanding of attractive-
ness of blowflies toward a corpse.
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Forensic entomology is a branch of the forensic sciences, which
studies insects and other arthropods (e.g., mites) in a medico-legal
context (1–5). Insects are predominantly used in this discipline to
determine the time of colonization which might be interpreted as
the death of an organism, otherwise known as the postmortem
interval. Postmortem interval is the period of time between death
and corpse discovery and is based on the age of the insect present
on a corpse (3,5–7). Insects can also reveal information in cases of
abuse or neglect of children or elderly (5,8,9), providing informa-
tion on the causes of death (5,10–14).

After death, the body is quickly visited and colonized by many
invertebrates with the majority being necrophagous insects (3,5,7).
Diptera and coleoptera have particular relationships with decompos-
ing remains that constitute a rich ephemeral resource (15–17).
These insects are attracted and colonize a cadaver in a relative pre-
dictable sequence called the entomofaunal succession (9,18–22).
This succession takes place as different stages of decay offer differ-
ent composition of nutrients that are used by specialized insect
species.

The blowfly (Diptera: Calliphoridae) such as Calliphora vomitoria
L. and Lucilia sericata Meigen are generally the most forensi-
cally important insects in Europe. They are indeed the most
numerous insects on dead bodies and are usually the first to
colonize it (3,5,7,23–25). These first cadaver colonizers are

attracted by the early decomposition odor, even from long dis-
tances (several kilometers) (3,23,26–31). At such distances,
visual cues probably play a limited role in attracting the insects
to the body. Their attraction is therefore thought to be reliant
on volatile chemical cues (25,32,33). It is speculated that the
volatile organic chemicals (VOCs) released during the decom-
positional process attract a wide range of insects (27,34–37).
Forensic entomologists often raise the question, Do the cadav-
eric VOCs regulate the necrophagous insects’ behavior (38)?
However, the relationship that may exist between cadaveric
VOCs and necrophagous insects is poorly studied (39). Because
of the sensitivity of their olfactory system, it is possible that
insects also might be used to develop a novel method for
detecting and locating chemicals associated with decomposition
(40,41).

The goal of this study was to identify the semiochemicals
mediating the corpse attractiveness to L. sericata. To undertake this
study, we conducted both electrophysiological and laboratory-based
behavioral experiments.

Materials and Methods

Rearing of Insects

L. sericata was selected because of its relative abundance on
decaying corpses in Europe and because it is one of the first spe-
cies to arrive on a dead body in this region (31). The flies were
kept on a 16-h light:8-h dark photoperiod and at €23�C. Males and
females were maintained together in a rearing cage (55 cm · 60
cm · 48 cm) supplied with sucrose, dried milk, and water.
Defrosted pork chop was supplied to provide a protein source. The
experiments were conducted with insects aged 5–15 days.
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Chemicals

Previous studies on cadaveric VOCs have been conducted at the
Department of Functional and Evolutionary Entomology (Gem-
bloux Agro-Bio Tech, University of Liege, Liege, Belgium) where
researchers identified a hundred cadaveric VOCs that are specifi-
cally released during the pig decompositional process (38). To con-
duct this study, we have selected the five most abundant
compounds we found in our previous work (38) and that were also
commonly reported as being part of a corpse’s decaying odors
(37,38,42–44). We also selected two other compounds reported to
be important in the decay process: putrescine and cadaverine
(43,44).

The chemicals tested in this study were therefore putrescine
(IUPAC name: butane-1,4-diamine, Fluka (Buchs, Switzerland)
32790, purity of >99%), cadaverine (IUPAC name: pentane-1,5-dia-
mine, Fluka 33211, purity of >97%), butan-1-ol (Sigma (St. Louis,
MO) 24124, purity of >99%), butanoic acid (Fluka 19210, purity
of >99.5%), indole (Fluka 57190, purity of >98.5%), dimethyl
disulfide (DMDS) (IUPAC name: methyldisulfanylmethane, Fluka
40221, purity of >98%), and phenol (Fluka 77612, purity of
>99%).

Electroantennography

Whole insects were covered and immobilized using plasticine,
but leaving the antennae free to move. One of the antennae was
mounted in Ag-AgCl glass capillary electrodes filled with saline
solution (NaCl, 7.5 g ⁄ L; CaCl2, 0.21 g ⁄L; KCl, 0.35 g ⁄ L; and
NaHCO3, 0.2 g ⁄ L) and in contact with a silver wire. Half of the
last distal antennal segment was immersed into the saline solution
of the recording electrode. The second antenna was excised from
the head, and the reference electrode was inserted into the head of
the insect. This setup was shown to produce elegant results on
house fly antennae (45).

The direct current potential was recorded on a computer (AutoS-
pike v. 3.2; Syntech, Hilversum, the Netherlands) using an amplifier
(IDAC-4; Syntech) with 100-fold amplification. This amplification
is necessary to have a sufficiently high level to drive a recording
device. A 0.5-cm2 piece of filter paper, which was impregnated
with 10 lL of the tested chemical, was placed in a Pasteur pipette
and used to puff an air sample in a constant flow (1.5 L ⁄min) dur-
ing 0.5 sec. The air was charcoal-filtered and humidified continu-
ously. As a control, the working antenna was first stimulated with
semiochemical-free filter paper (mechanical stimulus). Following
the control stimulation, each insect was stimulated with increasing
doses (0.001, 0.01, 0.1, 1, and 10 mg) of the seven chemical com-
pounds to be tested. To determine whether previous exposure
affected the response of the insect to additional treatments, an elec-
troantennography (EAG) experience with four insects and one com-
pound (DMDS) has been made. The orders of doses were presented
in a random sequence. Finally, to compare the average EAG
responses between increasing doses (0.001, 0.01, 0.1, 1, and 10 mg)
and random sequence, a one-way analysis of variance (ANOVA)
was conducted.

For each doses, Table 1 shows that there was no interaction
between the current treatment and the previous treatment and so,
prior exposure did not affect subsequent responses.

A preliminary study using different solvents was made to choose
the most adequate solvent for our EAG tests. We tested six sol-
vents randomly: n-hexane (Merck (Darmstadt, Germany), 96%), di-
chloromethane (Fluka, >99.8%), diethyl ether (IUPAC name:
ethoxyethane; VWR, 99.7%), n-pentane (Merck, 95%), paraffin oil,

and distilled water. The solvent used for dilution was tested alone
and must elicit minimal EAG responses, indistinguishable from
responses to air (mechanical stimulus). This preliminary step high-
lighted the best performance of distilled water as solvent, which is
also used by Kelling et al. (46).

Because phenol was insoluble in distilled water at the dose of
10 mg, this compound was not tested in EAG at this dose. More-
over, because indole was not soluble in distilled water at the doses
of 10, 1, and 0.1 mg, it was tested only in EAG with the doses of
0.01 and 0.001 mg. In olfactometer assays, indole was tested only
with a dose of 0.05 lg.

Thirty seconds separated each puff. This time is necessary to
repolarize the antenna. Each insect was stimulated with all dilutions
of the seven cadaveric VOCs, and the EAGs were recorded from
10 insects of both sexes.

Y-Tube Olfactometer Assays

Y-tube olfactometer (also called a two-arm olfactometer) was
used to investigate the behavioral responses of L. sericata exposed
to olfactive stimuli. The main arm and the two arms were made of
Teflon� (Bohlender, Gr�nsfedl, Germany). The main arm was
8.5 cm long and 1.5 cm wide. The two arms of the olfactometer
were 20 cm long and 1.5 cm wide. The chambers were made of
glass and have a basal diameter of 16 cm and a height of 16 cm.
A pump was used to pull air through the glass chambers and the
Y-tube. Airflow through each of the olfactometer arm was main-
tained at constant rate flow (800 mL ⁄ min). White light placed
above the olfactometer provided uniform lighting (1362 Lux).

Each chemical was tested alone, at the doses of 100 and
0.05 lg. The semiochemicals were applied on a 2-cm2 piece of
filter paper and randomly placed in one of the two glass chambers,
while a control filter paper was placed in the other. Fifty starved
insects of each sex were tested for each compound. Each individual
insect was introduced into the Y-tube at the entrance of the main
branch and thus had a choice between the test chemical and the
control. New filter papers were used for each insect. The Y-tube
was washed after each test with warm water and dichloromethane.
Each insect was allowed to spend a maximum of 15 min in the
olfactometer. The test was stopped when an insect made a choice.
An insect was considered to have made a choice when it moved
into one of the glass chambers. The measured response in each test
was calculated as the number of L. sericata attracted by the tested
compound.

Statistical Analysis

Statistical tests were performed using the statistical software
Minitab� v15.0 (State College, PA) for Windows� (Windows
Corporation, Redmond, WA).

The EAG responses were analyzed by a three-way ANOVA.
Three analyses of variance (with factors being sex, VOCs, and
doses) were conducted because phenol and indole were not tested

TABLE 1—Comparisons of the average electroantennography responses
between increasing doses and random sequence.

Doses (mg) F1,22 p

10 0.01 0.940
1 0.17 0.686
0.1 0.47 0.498
0.01 0.03 0.871
0.001 1.34 0.259
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at all doses. When a significant difference in EAG response based
on the VOCs tested was observed, a multiple comparison of the
means by the method of Newman and Keuls was made. Also, a
multiple comparison of the means by the method of orthogonal
polynomials was made when there was a significant difference in
EAG response based on the doses of the VOCs tested. These
analyses sought to answer three questions: (i) is there a significant
difference in perception between males and females? (ii) which
products? and (iii) which concentrations are better perceived by
L. sericata?

A chi-squared goodness-of-fit test was used to determine the
significance of the differences between the numbers of L. sericata
choosing the test compound or control arm of the olfactometer.

Results

Electroantennography

All tested cadaveric chemicals were perceived by the olfactory
system of L. sericata. The three-way ANOVA (with factors being
sex, VOCs, and doses) indicated that for each dose, the tested
VOCs were perceived differently, that is, at the doses of 10, 1, 0.1,
0.01, and 0.001 mg (F4,450 = 98.23, p < 0.001; F5,432 = 89.01,
p < 0.001; F5,432 = 35.78, p < 0.001; F6,252 = 24.64, p < 0.001;
and F6,252 = 3.41, p = 0.003, respectively). The multiple mean
comparisons by the Newman and Keuls test are shown in Table 2.
This comparison showed that DMDS and butan-1-ol induced higher
electrical responses when compared with the other compounds, at
the doses of 10 and 1 mg. For the other tested doses, the tested
insects were more sensitive to DMDS than to the other chemicals.
Females were also more sensitive to the cadaveric volatile chemi-
cals than males. Significant differences between males and females
were observed at the doses of 10 mg (F1,450 = 9.47, p = 0.002),
1 mg (F1,432 = 10.65, p = 0.001), and 0.1 mg (F1,432 = 6.69,
p = 0.010). There was no difference in perception between males
and females at the doses of 0.01 mg (F1,252 = 3.17, p = 0.076) and
0.001 mg (F1,252 = 0.01, p = 0.7920).

Females’ and males’ antennal responses were dose dependent for
cadaverine (F4,450 = 9.66, p < 0.001), DMDS (F4,450 = 106.39,
p < 0.001), butan-1-ol (F4,450 = 57.66, p < 0.001), butanoic acid
(F4,450 = 2.83, p = 0.024), putrescine (F4,450 = 4.80, p = 0.001), and
phenol (F3,432 = 3.56, p = 0.014); that is, an increase in stimulus
vapor concentration typically caused an increase in the action poten-
tial rate (47). The multiple comparisons of the means by the method
of orthogonal polynomials showed that antennal responses induced
by cadaverine, DMDS, and butan-1-ol significantly increased in a
quadratic manner with the logarithm of the doses (Fig. 1). More-
over, for DMDS, a difference in perception according to the doses
between males and females was observed (F3,432 = 3.97, p < 0.001)
when antennal perceptions were compared at the doses of 1, 0.1,

0.01, and 0.001 mg. The antennal responses of butanoic acid and
putrescine significantly increased in a linear manner with the loga-
rithm of the doses. For phenol, the antennal responses did not follow
any relationship to the logarithm of the doses.

Y-Tube Olfactometer

In the behavioral assay, 1,4-diaminobutane (putrescine) was
repulsive for female flies at the dose of 0.1 mg (v2 = 7.37,
p = 0.007) (Table 3). At this dose, the other compounds did not
elicit any observable behavior in both males and females. DMDS
attracted females at the dose of 0.05 lg (v2 = 6.48, p = 0.011),
while butan-1-ol attracted both males and females at 0.05 lg
(v2 = 3.92, p = 0.048 and v2 = 9.68, p = 0.002, respectively). The
other compounds were not attractive or repulsive to L. sericata at
the two tested doses.

Discussion

DMDS and butan-1-ol were reported as major chemicals to be
released from decaying pig carcasses (38,44). These two chemicals
were the most perceived by the fly antennae in our EAG experi-
ments. We observed that the largest depolarizations were elicited
by DMDS. In our bioassay, both DMDS and butan-1-ol were
attractive for female flies at the dose of 0.05 lg (and not at a
higher dose, i.e., 100 lg). Sulfurous compounds like DMDS
strongly attract carrion flies as L. sericata (29,48,49) or Musca
domestica (50–53). Also, the behavioral assays at the dose of
100 lg showed that DMDS and butan-1-ol did not show any sig-
nificant attractiveness. This may be due to the difference in concen-
trations of these two compounds in the field (39), and this dose
may be too high to attract L. sericata.

Cadaverine and putrescine are compounds usually associated
with the decaying processes (43,54). However, these two diamines
were not detected from decaying corpses in several studies

TABLE 2—The multiple comparisons of the average electroantennography (EAG) responses with Newman and Keuls test.

10 mg Butanoic acid*
237 € 16

Putrescine*
303 € 31.9

Cadaverine*
356 € 44.2

Butan-1-ol
718 € 68.7

DMDS
1062 € 89.7

1 mg Phenol*
208 € 21.3

Putrescine*
208 € 25.3

Butanoic acid*
218 € 19.7

Cadaverine*
270 € 29.6

Butan-1-ol
476 € 39.4

DMDS
819 € 79.5

0.1 mg Phenol*
144 € 10.5

Butanoic acid*
150 € 13.3

Cadaverine*
160 € 15.2

Putrescine*
174 € 14.6

Butan-1-ol*
202 € 17.2

DMDS
542 € 52.3

0.01 mg Phenol*
103 € 10.7

Butanoic acid*
117 € 9.7

Cadaverine*
118 € 12.2

Butan-1-ol*
136 € 7.7

Putrescine*
158 € 11.1

Indole*
172 € 19.5

DMDS
327 € 33.1

0.001 mg Butan-1-ol*
86 € 12.8

Putrescine*
93 € 11.5

Cadaverine*
99 € 13.6

Butanoic acid*
106 € 14.4

Phenol*
106 € 9.4

Indole*
139 € 13.1

DMDS
166 € 22.2

Average EAG responses € SE. For each dose, chemicals sharing the * induce similar EAG responses as a result of Newman and Keuls test. a = 0.05.
DMDS, dimethyl disulfide.

FIG. 1—Effect of doses of cadaverine, dimethyl disulfide (DMDS), and
butan-1-ol on antennal responses (€SE) of Lucilia sericata.
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(38,42, 44,54). In agreement with Easton and Feir (55), there was
no response to cadaverine in EAG and in our behavioral assays.
However, behavioral assay with putrescine showed that this VOC
was clearly repulsive at the dose of 100 lg, which is also in agree-
ment with Easton and Feir (55).

Although indole and phenol had been suggested as putative
attractants and stimulants of oviposition for blowflies, including
L. sericata (50–53,56–58), our work showed that phenol and indole
did not induce any behavioral response. Our results are also in
accordance with those of Easton and Feir (55) who found that
indole was unattractive to L. sericata.

Park and Cork (49) reported that butanoic acid inhibited the
spontaneous activity of all antennal neurons studied in female
Lucilia cuprina Wiedemann. Moreover, other studies showed that
butanoic acid did not always inhibit antennal olfactory receptor
neurons but stimulated the olfactory neurons in several insect spe-
cies like Stomoxys calcitrans L. (59) or M. domestica L. (50–53).
In this study, butanoic acid was not perceived by L. sericata in
EAG test and in bioassays. Additional studies based on the activa-
tion or the inhibition of the antennal neurons of L. sericata by buta-
noic acid must be realized for a better understanding of this
olfactory process.

The behavioral assays showed that the behavior of the blowflies
is influenced by the tested dose. Moreover, it is necessary to keep
in mind that there are huge differences in volatilities among the
VOCs tested in our experiments (39,60).

Our electrophysiological results also showed that L. sericata
females were more sensitive to decomposing odors than males. In
our olfactometer, females and males showed different behavior for
all tested chemicals except for butan-1-ol. Females only responded to
DMDS and putrescine. In insect species where males and females
have the same food preferences, sexual dimorphism of the olfactory
system has also been demonstrated (61). Sukontason et al. (61),

based on the observations of Parasarcophaga dux and L. cuprina,
showed that the number of sensory pits in female flies is greater than
in males of the same species. This information supports the hypothe-
sis that the abundant sensory pits would help female flies to be more
sensitive in olfactory reception. However, in some tsetse species, the
electrophysiological responses of females to host odors were higher
than those of males, whereas in other tsetse species, males were more
sensitive than females (46,62).

In conclusion, our results may have potential implications in a
better understanding of attractiveness of blowflies toward a corpse.
The comprehension of the role of odors in the behavior of necroph-
agous insects would make it possible to consider new developments
in forensic sciences and the research of the bodies with the use of
insects that may act as cadaveric ‘‘biodetectors.’’ In general, there
has been very little study performed in the area of the cadaveric
volatile compounds that influence the behavior of necrophagous
insects. Further researches on the behavior of necrophagous insects
are currently conducted at the Department of Functional and Evolu-
tionary Entomology.
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